If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+80x=0
a = 6; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·6·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*6}=\frac{-160}{12} =-13+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*6}=\frac{0}{12} =0 $
| 174=62-x | | 3x-10=2x+20+90 | | m2+ 6=8 | | 135+5+5x=180 | | 2(0.1t-3)=10 | | )9z+11–5z=27 | | Y=2x(3)-4x+5 | | 4.8z=-9 | | 3b/10=b+2 | | -2x+5=7x–13 | | 3x+4=4x+3{ | | x-(32-4x)=-7 | | 3(x-7)=-45 | | 9x−1=81 | | 1/3d=-12 | | x-76-37=0 | | -4(2-3b)=-25 | | 2(22,5-1,5y)+3y=45 | | 146/8=x | | 5x–9–0.5(8x–6)=25 | | 8/x=146 | | 2(x=5)÷3=8 | | x8=146 | | -y-2=7 | | 2(x-5)=4x+7 | | 2x+6+4x=40+x-3x | | 13=2x3 | | 4(7x+6)=6x+2 | | x=2/3=4/3 | | 2x+5-x=-2x+8-x | | 5(2x-4)=3x-8 | | 8-(-9b)=(-73) |